GRP78: References

1.Radons,J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21, 379-404 (2016).[PubMed]

2.Zuiderweg,E.R., Hightower,L.E., & Gestwicki,J.E. The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones 22, 173-189 (2017).[PubMed]

3.Braakman,I. & Bulleid,N.J. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem. 80, 71-99 (2011).[PubMed]

4.Genereux,J.C. et al. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J. 34, 4-19 (2015). [PubMed]

5.Cook,K.L. et al. Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer. Cancer Res. 76, 5657-5670 (2016).[PubMed]

6.Gonzales,P.A. et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J. Am. Soc. Nephrol. 20, 363-379 (2009).[PubMed]

7.Prunotto,M. et al. Proteomic analysis of podocyte exosome-enriched fraction from normal human urine. J. Proteomics 82, 193-229 (2013).[PubMed]

8.Davidson,D.J. et al. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res. 65, 4663-4672 (2005).[PubMed]

9.Buschow,S.I. et al. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol. Cell Biol. 88, 851-856 (2010).[PubMed]

10.Suzuki,C.K., Bonifacino,J.S., Lin,A.Y., Davis,M.M., & Klausner,R.D. Regulating the retention of T-cell receptor alpha chain variants within the endoplasmic reticulum: Ca(2+)-dependent association with BiP. J. Cell Biol. 114, 189-205 (1991).[PubMed]

11.Birukova,A.A. et al. GRP78 is a novel receptor initiating a vascular barrier protective response to oxidized phospholipids. Mol. Biol. Cell 25, 2006-2016 (2014).[PubMed]

12.Corrigall,V.M., Bodman-Smith,M.D., Brunst,M., Cornell,H., & Panayi,G.S. Inhibition of antigen-presenting cell function and stimulation of human peripheral blood mononuclear cells to express an antiinflammatory cytokine profile by the stress protein BiP: relevance to the treatment of inflammatory arthritis. Arthritis Rheum. 50, 1164-1171 (2004).[PubMed]

13.Ritossa,F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18, 571-573 (1962).[CrossRef]

14.Ritossa,F. New puffs induced by temperature shock, DNP and salicilate in salivary chromosomes of D. melanogaster. Drosophila Information Service 37, 122-123 (1963).[Drosophila Information Service]

15.Ritossa,F. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp. Cell Res. 35, 601-607 (1964).[CrossRef]

16.Tissieres,A., Mitchell,H.K., & Tracy,U.M. Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J. Mol. Biol. 84, 389-398 (1974).[PubMed]

17.Lindquist,S. & Craig,E.A. The heat-shock proteins. Annu. Rev. Genet. 22, 631-677 (1988). [PubMed]

18.Schlesinger,M.J., Ashburner,M., & Tissières,A. Heat shock, from bacteria to man. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1982).

19.Lindquist,S. The heat-shock response. Annu. Rev. Biochem. 55, 1151-1191 (1986).[PubMed]

20.Craig,E.A. & Gross,C.A. Is hsp70 the cellular thermometer? Trends Biochem. Sci. 16, 135-140 (1991).[PubMed]

21.Haas,I.G. & Wabl,M. Immunoglobulin heavy chain binding protein. Nature 306, 387-389 (1983).[PubMed]

22.Peluso,R.W., Lamb,R.A., & Choppin,P.W. Infection with paramyxoviruses stimulates synthesis of cellular polypeptides that are also stimulated in cells transformed by Rous sarcoma virus or deprived of glucose. Proc. Natl. Acad. Sci. U. S. A 75, 6120-6124 (1978). [PubMed]

23.Shiu,R.P., Pouyssegur,J., & Pastan,I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. U. S. A 74, 3840-3844 (1977).[PubMed]

24.Isaka,T., Yoshida,M., Owada,M., & Toyoshima,K. Alterations in membrane polypeptides of chick embryo fibroblasts induced by transformation with avian sarcoma viruses. Virology 65, 226-237 (1975).[PubMed]

25.Stone,K.R., Smith,R.E., & Joklik,W.K. Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses. Virology 58, 86-100 (1974).[PubMed]

26.Ting,J. & Lee,A.S. Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: structure, conservation, and regulation. DNA 7, 275-286 (1988).[PubMed]

27.Watowich,S.S., Morimoto,R.I., & Lamb,R.A. Flux of the paramyxovirus hemagglutinin-neuraminidase glycoprotein through the endoplasmic reticulum activates transcription of the GRP78-BiP gene. J. Virol. 65, 3590-3597 (1991).[PubMed]

28.Takemoto,H. et al. Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch. Biochem. Biophys. 296, 129-136 (1992).[PubMed]

29.Berger,C.L., Dong,Z., Hanlon,D., Bisaccia,E., & Edelson,R.L. A lymphocyte cell surface heat shock protein homologous to the endoplasmic reticulum chaperone, immunoglobulin heavy chain binding protein BIP. Int. J. Cancer 71, 1077-1085 (1997).[PubMed]

30.Wisniewska,M. et al. Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B’, and HSPA5/BiP/GRP78. PLoS One 5, e8625 (2010).[PubMed]

31.Yang,J., Nune,M., Zong,Y., Zhou,L., & Liu,Q. Close and allosteric opening of the polypeptide-binding site in a human Hsp70 chaperone BiP. Structure 23, 2191-2203 (2015).[PubMed]

32.Hughes,S.J. et al. Correction: Probing the ATP site of GRP78 with nucleotide triphosphate analogs. PLoS One 11, e0158256 (2016).[PubMed]

33.Hughes,S.J. et al. Probing the ATP site of GRP78 with nucleotide triphosphate analogs. PLoS One 11, e0154862 (2016).[PubMed]

34.Gribaldo,S. et al. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 181, 434-443 (1999).[PubMed]

35.Kampinga,H.H. & Craig,E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 11, 579-592 (2010).[PubMed]

36.Sharma,D. et al. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS One 4, e6644 (2009).[PubMed]

37.Sharma,D. & Masison,D.C. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept. Lett. 16, 571-581 (2009). [PubMed]

38.Flaherty,K.M., Luca-Flaherty,C., & McKay,D.B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623-628 (1990).[PubMed]

39.Flaherty,K.M., McKay,D.B., Kabsch,W., & Holmes,K.C. Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. U. S. A 88, 5041-5045 (1991).[PubMed]

40.McKay,D.B. Structure and mechanism of 70-kDa heat-shock-related proteins. Adv. Protein Chem. 44, 67-98 (1993).[PubMed]

41.Welch,W.J., Garrels,J.I., Thomas,G.P., Lin,J.J., & Feramisco,J.R. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins. J. Biol. Chem. 258, 7102-7111 (1983).[PubMed]

42.Cloutier,P., Lavallee-Adam,M., Faubert,D., Blanchette,M., & Coulombe,B. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet. 9, e1003210 (2013).[PubMed]

43.Jakobsson,M.E. et al. Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J. Biol. Chem. 288, 27752-27763 (2013).[PubMed]

44.Sanyal,A. et al. A novel link between Fic (filamentation induced by cAMP)-mediated adenylylation/AMPylation and the unfolded protein response. J. Biol. Chem. 290, 8482-8499 (2015).[PubMed]

45.Rao,R. et al. Treatment with panobinostat induces glucose-regulated protein 78 acetylation and endoplasmic reticulum stress in breast cancer cells. Mol. Cancer Ther. 9, 942-952 (2010).[PubMed]

46.Lin,J. et al. GALNT6 stabilizes GRP78 protein by O-glycosylation and enhances its activity to suppress apoptosis under stress condition. Neoplasia 19, 43-53 (2017).[PubMed]

47.Carlsson,L. & Lazarides,E. ADP-ribosylation of the Mr 83,000 stress-inducible and glucose-regulated protein in avian and mammalian cells: modulation by heat shock and glucose starvation. Proc. Natl. Acad. Sci. U. S. A 80, 4664-4668 (1983).[PubMed]

48.Hendriks,I.A. et al. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat. Struct. Mol. Biol. 24, 325-336 (2017).[PubMed]

49.Freiden,P.J., Gaut,J.R., & Hendershot,L.M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J. 11, 63-70 (1992).[PubMed]

50.Brocchieri,L., Conway de,M.E., & Macario,A.J. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC. Evol. Biol. 8, 19 (2008).[PubMed]

51.Harrison,G.S. et al. Chromosomal location of human genes encoding major heat-shock protein HSP70. Somat. Cell Mol. Genet. 13, 119-130 (1987).[PubMed]

52.Toledo,H. et al. Dissociation of glucose-regulated protein Grp78 and Grp78-IgE Fc complexes by ATP. Proc. Natl. Acad. Sci. U. S. A 90, 2505-2508 (1993).[PubMed]

53.Ni,M., Zhou,H., Wey,S., Baumeister,P., & Lee,A.S. Regulation of PERK signaling and leukemic cell survival by a novel cytosolic isoform of the UPR regulator GRP78/BiP. PLoS One 4, e6868 (2009).[PubMed]

54.Kampinga,H.H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14, 105-111 (2009).[PubMed]

55.Chang,S.C. et al. Rat gene encoding the 78-kDa glucose-regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc. Natl. Acad. Sci. U. S. A 84, 680-684 (1987).[PubMed]

56.Kim,Y.K. & Lee,A.S. Transcriptional activation of the glucose-regulated protein genes and their heterologous fusion genes by beta-mercaptoethanol. Mol. Cell Biol. 7, 2974-2976 (1987).[PubMed]

57.Lee,A.S., Delegeane,A.M., Baker,V., & Chow,P.C. Transcriptional regulation of two genes specifically induced by glucose starvation in a hamster mutant fibroblast cell line. J. Biol. Chem. 258, 597-603 (1983).[PubMed]

58.Lee,A.S., Wells,S., Kim,K.S., & Scheffler,I.E. Enhanced synthesis of the glucose/calcium-regulated proteins in a hamster cell mutant deficient in transfer of oligosaccharide core to polypeptides. J. Cell Physiol 129, 277-282 (1986).[PubMed]

59.Ni,M., Zhang,Y., & Lee,A.S. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochem. J. 434, 181-188 (2011).[PubMed]

60.Zhu,D., Dix,D.J., & Eddy,E.M. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development 124, 3007-3014 (1997).[PubMed]

61.Leung,T.K., Rajendran,M.Y., Monfries,C., Hall,C., & Lim,L. The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B’) and isolation of its cDNA and genomic DNA. Biochem. J. 267, 125-132 (1990).[PubMed]

62.Siddiqui,F. et al. Induction of the human heat shock promoter HSP70B by nutritional stress: implications for cancer gene therapy. Cancer Invest. 26, 553-561 (2008).[PubMed]

63.Dworniczak,B. & Mirault,M.E. Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’ protein. Nucleic Acids Res. 15, 5181-5197 (1987).[PubMed]

64.Mizzen,L.A., Chang,C., Garrels,J.I., & Welch,W.J. Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein. J. Biol. Chem. 264, 20664-20675 (1989).[PubMed]

65.Merrick,B.A., Walker,V.R., He,C., Patterson,R.M., & Selkirk,J.K. Induction of novel Grp75 isoforms by 2-deoxyglucose in human and murine fibroblasts. Cancer Lett. 119, 185-190 (1997).[PubMed]

66.Han,Z., Truong,Q.A., Park,S., & Breslow,J.L. Two Hsp70 family members expressed in atherosclerotic lesions. Proc. Natl. Acad. Sci. U. S. A 100, 1256-1261 (2003).[PubMed]

67.Hu,G. et al. A novel endothelial-specific heat shock protein HspA12B is required in both zebrafish development and endothelial functions in vitro. J. Cell Sci. 119, 4117-4126 (2006).[PubMed]

68.Otterson,G.A. et al. Stch encodes the ‘ATPase core’ of a microsomal stress 70 protein. EMBO J. 13, 1216-1225 (1994).[PubMed]

69.Gonzalez-Begne,M. et al. Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J. Proteome Res. 8, 1304-1314 (2009).[PubMed]

70.Wan,T. et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood 103, 1747-1754 (2004).[PubMed]

71.Otto,H. et al. The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. U. S. A 102, 10064-10069 (2005).[PubMed]

72.Wu,C.Y., Lin,C.T., Wu,M.Z., & Wu,K.J. Induction of HSPA4 and HSPA14 by NBS1 overexpression contributes to NBS1-induced in vitro metastatic and transformation activity. J. Biomed. Sci. 18, 1 (2011).[PubMed]

73.Yang,Z. et al. Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. Int. J. Med. Sci. 12, 256-263 (2015).[PubMed]

74.Han,Y.L., Hou,C.C., Du,C., & Zhu,J.Q. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection. Fish Shellfish Immunol. 60, 299-310 (2017).[PubMed]

75.Mirzaei,M.R., Kazemi,A.M., Asadi,M.H., & Mowla,S.J. Altered expression of high molecular weight heat shock proteins after OCT4B1 suppression in human tumor cell lines. Cell J. 17, 608-616 (2016).[PubMed]

76.Massey,A.J. ATPases as drug targets: insights from heat shock proteins 70 and 90. J. Med. Chem. 53, 7280-7286 (2010).[PubMed]

77.Powers,M.V. et al. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 9, 1542-1550 (2010).[PubMed]

78.van Huizen R., Martindale,J.L., Gorospe,M., & Holbrook,N.J. P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J. Biol. Chem. 278, 15558-15564 (2003).[PubMed]

79.Plongthongkum,N., Kullawong,N., Panyim,S., & Tirasophon,W. Ire1 regulated XBP1 mRNA splicing is essential for the unfolded protein response (UPR) in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 354, 789-794 (2007).[PubMed]

80.Nicholson,R.C., Williams,D.B., & Moran,L.A. An essential member of the HSP70 gene family of Saccharomyces cerevisiae is homologous to immunoglobulin heavy chain binding protein. Proc. Natl. Acad. Sci. U. S. A 87, 1159-1163 (1990).[PubMed]

81.Munro,S. & Pelham,H.R. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46, 291-300 (1986).[PubMed]

82.Ting,J. et al. The nucleotide sequence encoding the hamster 78-kDa glucose-regulated protein (GRP78) and its conservation between hamster and rat. Gene 55, 147-152 (1987).[PubMed]

83.Hijarrubia,M.J., Casqueiro,J., Gutierrez,S., Fernandez,F.J., & Martin,J.F. Characterization of the bip gene of Aspergillus awamori encoding a protein with an HDEL retention signal homologous to the mammalian BiP involved in polypeptide secretion. Curr. Genet. 32, 139-146 (1997).[PubMed]

84.Techel,D. et al. Molecular analysis of a glucose-regulated gene (grp78) of Neurospora crassa. Biochim. Biophys. Acta 1397, 21-26 (1998).[PubMed]

85.Gupta,R.S., Aitken,K., Falah,M., & Singh,B. Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A 91, 2895-2899 (1994).[PubMed]

86.Luan,W., Li,F., Zhang,J., Wang,B., & Xiang,J. Cloning and expression of glucose regulated protein 78 (GRP78) in Fenneropenaeus chinensis. Mol. Biol. Rep. 36, 289-298 (2009).[PubMed]

87.Wakasa,Y., Hayashi,S., & Takaiwa,F. Expression of OsBiP4 and OsBiP5 is highly correlated with the endoplasmic reticulum stress response in rice. Planta 236, 1519-1527 (2012).[PubMed]

88.Hayashi,S., Wakasa,Y., Takahashi,H., Kawakatsu,T., & Takaiwa,F. Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J. 69, 946-956 (2012).[PubMed]

89.Noh,S.J., Kwon,C.S., Oh,D.H., Moon,J.S., & Chung,W.I. Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene 311, 81-91 (2003).[PubMed]

90.Maruyama,D., Sugiyama,T., Endo,T., & Nishikawa,S. Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol. 55, 801-810 (2014).[PubMed]

91.Maruyama,D., Endo,T., & Nishikawa,S. BiP3 supports the early stages of female gametogenesis in the absence of BiP1 and BiP2 in Arabidopsis thaliana. Plant Signal. Behav. 10, e1035853 (2015).[PubMed]

92.Zhu,J. et al. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC Plant Biol. 14, 260 (2014).[PubMed]

93.Muench,D.G. et al. Molecular cloning, expression and subcellular localization of a BiP homolog from rice endosperm tissue. Plant Cell Physiol. 38, 404-412 (1997).[PubMed]

94.Nielsen,H., Engelbrecht,J., Brunak,S., & von,H.G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng. 10, 1-6 (1997).[PubMed]

95.Sung,D.Y., Vierling,E., & Guy,C.L. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126, 789-800 (2001).[PubMed]

96.Macias,A.T. et al. Adenosine-derived inhibitors of 78 kDa glucose regulated protein (Grp78) ATPase: insights into isoform selectivity. J. Med. Chem. 54, 4034-4041 (2011).[PubMed]

97.Mayer,M.P., Brehmer,D., Gassler,C.S., & Bukau,B. Hsp70 chaperone machines. Adv. Protein Chem. 59, 1-44 (2001).[PubMed]

98.Zhu,X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606-1614 (1996).[PubMed]

99.Mayer,M.P. Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem. Sci. 38, 507-514 (2013).[PubMed]

100.Mayer,M.P. & Bukau,B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62, 670-684 (2005).[PubMed]

101.Buchberger,A. et al. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem. 270, 16903-16910 (1995).[PubMed]

102.Zhuravleva,A., Clerico,E.M., & Gierasch,L.M. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell 151, 1296-1307 (2012).[PubMed]

103.Bertelsen,E.B., Chang,L., Gestwicki,J.E., & Zuiderweg,E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. U. S. A 106, 8471-8476 (2009).[PubMed]

104.Swain,J.F. et al. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell 26, 27-39 (2007).[PubMed]

105.Flynn,G.C., Chappell,T.G., & Rothman,J.E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245, 385-390 (1989).[PubMed]

106.Schmid,D., Baici,A., Gehring,H., & Christen,P. Kinetics of molecular chaperone action. Science 263, 971-973 (1994).[PubMed]

107.Lai,A.L. et al. Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. J. Biol. Chem. 292, 8773-8785 (2017).[PubMed]

108.Kityk,R., Kopp,J., Sinning,I., & Mayer,M.P. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell 48, 863-874 (2012).[PubMed]

109.Qi,R. et al. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat. Struct. Mol. Biol. 20, 900-907 (2013).[PubMed]

110.Harrison,C.J., Hayer-Hartl,M., Di,L.M., Hartl,F., & Kuriyan,J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431-435 (1997).[PubMed]

111.Liberek,K., Marszalek,J., Ang,D., Georgopoulos,C., & Zylicz,M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U. S. A 88, 2874-2878 (1991).[PubMed]

112.Craig,E.A., Huang,P., Aron,R., & Andrew,A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol. Biochem. Pharmacol. 156, 1-21 (2006).[PubMed]

113.Ahmad,A. et al. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc. Natl. Acad. Sci. U. S. A 108, 18966-18971 (2011).[PubMed]

114.Preissler,S. et al. AMPylation targets the rate-limiting step of BiP’s ATPase cycle for its functional inactivation. Elife 6, (2017).[PubMed]

115.Wieteska,L., Shahidi,S., & Zhuravleva,A. Allosteric fine-tuning of the conformational equilibrium poises the chaperone BiP for post-translational regulation. Elife 6, (2017).[PubMed]

116.Reddy,R.K. et al. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem. 278, 20915-20924 (2003).[PubMed]

117.Sun,F.C. et al. Localization of GRP78 to mitochondria under the unfolded protein response. Biochem. J. 396, 31-39 (2006).[PubMed]

118.Chen,H.Y. et al. The endogenous GRP78 interactome in human Hhad and Nnck cancers: a deterministic role of cell surface GRP78 in cancer stemness. Sci. Rep. 8, 536 (2018).[PubMed]

119.Rao,R.V. et al. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 514, 122-128 (2002).[PubMed]

120.Wooden,S.K. & Lee,A.S. Comparison of the genomic organizations of the rat grp78 and hsc73 gene and their evolutionary implications. DNA Seq. 3, 41-48 (1992).[PubMed]

121.Tsai,Y.L. et al. Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J. Biol. Chem. 290, 8049-8064 (2015).[PubMed]

122.Arap,M.A. et al. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6, 275-284 (2004).[PubMed]

123.Lee,A.S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 67, 3496-3499 (2007).[PubMed]

124.Li,J. & Lee,A.S. Stress induction of GRP78/BiP and its role in cancer. Curr. Mol. Med. 6, 45-54 (2006).[PubMed]

125.Delpino,A. & Castelli,M. The 78 kDa glucose-regulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation. Biosci. Rep. 22, 407-420 (2002).[PubMed]

126.Li,Z. et al. Acetylation modification regulates GRP78 secretion in colon cancer cells. Sci. Rep. 6, 30406 (2016).[PubMed]

127.Steiner,N. et al. Expression and release of glucose-regulated protein-78 (GRP78) in multiple myeloma. Oncotarget 8, 56243-56254 (2017).[PubMed]

128.Tsai,Y.L. et al. Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-beta signaling. Proc. Natl. Acad. Sci. U. S. A(2018).[PubMed]

129.Printsev,I., Curiel,D., & Carraway,K.L., III Membrane protein quantity control at the endoplasmic reticulum. J. Membr. Biol. 250, 379-392 (2017).[PubMed]

130.Casas,C. GRP78 at the centre of the stage in cancer and neuroprotection. Front. Neurosci. 11, 177 (2017).[PubMed]

131.Gardner,B.M., Pincus,D., Gotthardt,K., Gallagher,C.M., & Walter,P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb. Perspect. Biol. 5, a013169 (2013).[PubMed]

132.Schröder,M. & Kaufman,R.J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739-789 (2005).[PubMed]

133.Alder,N.N., Shen,Y., Brodsky,J.L., Hendershot,L.M., & Johnson,A.E. The molecular mechanisms underlying BiP-mediated gating of the Sec61 translocon of the endoplasmic reticulum. J. Cell Biol. 168, 389-399 (2005).[PubMed]

134.Delie,F., Petignat,P., & Cohen,M. GRP78-targeted nanotherapy against castrate-resistant prostate cancer cells expressing membrane GRP78. Target Oncol. 8, 225-230 (2013).[PubMed]

135.Delie,F., Petignat,P., & Cohen,M. GRP78 protein expression in ovarian cancer patients and Pprspectives for a drug-targeting approach. J. Oncol. 2012, 468615 (2012).[PubMed]

136.Gopal,U., Gonzalez-Gronow,M., & Pizzo,S.V. Activated alpha2-macroglobulin regulates transcriptional activation of c-MYC target genes through cell surface GRP78 protein. J. Biol. Chem. 291, 10904-10915 (2016).[PubMed]

137.Li,Z. et al. Cell-surface GRP78 facilitates colorectal cancer cell migration and invasion. Int. J. Biochem. Cell Biol. 45, 987-994 (2013).[PubMed]

138.Lin,Y.G. et al. Targeting the glucose-regulated protein-78 abrogates Pten-null driven AKT activation and endometrioid tumorigenesis. Oncogene 34, 5418-5426 (2015).[PubMed]

139.Misra,U.K. & Pizzo,S.V. Ligation of cell surface GRP78 with antibody directed against the COOH-terminal domain of GRP78 suppresses Ras/MAPK and PI 3-kinase/AKT signaling while promoting caspase activation in human prostate cancer cells. Cancer Biol. Ther. 9, 142-152 (2010).[PubMed]

140.Misra,U.K. & Pizzo,S.V. Activated alpha2-macroglobulin binding to human prostate cancer cells triggers insulin-like responses. J. Biol. Chem. 290, 9571-9587 (2015).[PubMed]

141.Gopal,U. & Pizzo,S.V. Cell surface GRP78 promotes tumor cell histone acetylation through metabolic reprogramming: a mechanism which modulates the Warburg effect. Oncotarget 8, 107947-107963 (2017).[PubMed]

142.Fu,R., Yang,P., Wu,H.L., Li,Z.W., & Li,Z.Y. GRP78 secreted by colon cancer cells facilitates cell proliferation via PI3K/Akt signaling. Asian Pac. J. Cancer Prev. 15, 7245-7249 (2014).[PubMed]

143.Peng,Y., Li,Z., & Li,Z. GRP78 secreted by tumor cells stimulates differentiation of bone marrow mesenchymal stem cells to cancer-associated fibroblasts. Biochem. Biophys. Res. Commun. 440, 558-563 (2013).[PubMed]

144.Marin-Briggiler,C.I. et al. Glucose-regulated protein 78 (Grp78/BiP) is secreted by human oviduct epithelial cells and the recombinant protein modulates sperm-zona pellucida binding. Fertil. Steril. 93, 1574-1584 (2010).[PubMed]

145.Shamovsky,I. & Nudler,E. New insights into the mechanism of heat shock response activation. Cell Mol. Life Sci. 65, 855-861 (2008).[PubMed]

146.Pirkkala,L., Nykanen,P., & Sistonen,L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118-1131 (2001).[PubMed]

147.Åkerfelt,M., Morimoto,R.I., & Sistonen,L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545-555 (2010).[PubMed]

148.Mason,P.B., Jr. & Lis,J.T. Cooperative and competitive protein interactions at the hsp70 promoter. J. Biol. Chem. 272, 33227-33233 (1997).[PubMed]

149.Westwood,J.T., Clos,J., & Wu,C. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353, 822-827 (1991).[PubMed]

150.Resendez, Jr.,E., Wooden,S.K., & Lee,A.S. Identification of highly conserved regulatory domains and protein-binding sites in the promoters of the rat and human genes encoding the stress-inducible 78-kilodalton glucose-regulated protein. Mol. Cell Biol. 8, 4579-4584 (1988).[PubMed]

151.Alexandre,S., Nakaki,T., Vanhamme,L., & Lee,A.S. A binding site for the cyclic adenosine 3′,5′-monophosphate-response element-binding protein as a regulatory element in the grp78 promoter. Mol. Endocrinol. 5, 1862-1872 (1991).[PubMed]

152.Spizzo,R., Nicoloso,M.S., Croce,C.M., & Calin,G.A. SnapShot: microRNAs in cancer. Cell 137, 586 (2009).[PubMed]

153.Visone,R. & Croce,C.M. MiRNAs and cancer. Am. J. Pathol. 174, 1131-1138 (2009).[PubMed]

154.Radons,J. Inflammatory stress and sarcomagenesis: a vicious interplay. Cell Stress Chaperones 19, 1-13 (2014).[PubMed]

155.Bao,Q. et al. Role of microRNA-124 in cardiomyocyte hypertrophy inducedby angiotensin II. Cell Mol. Biol. (Noisy-le-grand) 63, 23-27 (2017).[PubMed]

156.Zhou,Y. et al. Downregulation of microRNA199a5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress. Mol. Med. Rep. 16, 2992-3000 (2017).[PubMed]

157.Ouyang,Y.B. et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol. Dis. 45, 555-563 (2012).[PubMed]

158.Ji,J. et al. PPARβ/δ activation protects against corticosterone-induced ER stress in astrocytes by inhibiting the CpG hypermethylation of microRNA-181a. Neuropharmacology 113, 396-406 (2017).[PubMed]

159.Peng,Z. et al. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J. Neurosci. Res. 91, 1349-1362 (2013).[PubMed]

160.Iwamune,M., Nakamura,K., Kitahara,Y., & Minegishi,T. MicroRNA-376a regulates 78-kilodalton glucose-regulated protein expression in rat granulosa cells. PLoS One 9, e108997 (2014).[PubMed]

161.Wang,P. et al. Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J. Neurosci. Res. 93, 1756-1768 (2015).[PubMed]

162.Wang,C. et al. MicroRNA-30a-5p inhibits the growth of renal cell carcinoma by modulating GRP78 expression. Cell Physio.l Biochem. 43, 2405-2419 (2017).[PubMed]

163.Macejak,D.G. & Sarnow,P. Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353, 90-94 (1991).[PubMed]

164.Yang,Q. & Sarnow,P. Location of the internal ribosome entry site in the 5′ non-coding region of the immunoglobulin heavy-chain binding protein (BiP) mRNA: evidence for specific RNA-protein interactions. Nucleic Acids Res. 25, 2800-2807 (1997).[PubMed]

165.Dai,R.Y. et al. PI3K/Akt promotes GRP78 accumulation and inhibits endoplasmic reticulum stress-induced apoptosis in HEK293 cells. Folia Biol. (Praha) 56, 37-46 (2010).[PubMed]

166.Cappello,F. et al. Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS One 6, e28200 (2011).[PubMed]

167.Guzhova,I.V., Darieva,Z.A., Melo,A.R., & Margulis,B.A. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2, 132-139 (1997).[PubMed]

168.Wang,Y., Chen,L., Hagiwara,N., & Knowlton,A.A. Regulation of heat shock protein 60 and 72 expression in the failing heart. J. Mol. Cell Cardiol. 48, 360-366 (2010).[PubMed]

169.Buontempo,F. et al. Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-kappaB. Oncotarget 7, 1323-1340 (2016).[PubMed]

170.Smith,J.A. Regulation of cytokine production by the unfolded protein response; implications for infection and autoimmunity. Front. Immunol. 9, 422 (2018).[PubMed]

171.Gong,J. et al. Molecular signal networks and regulating mechanisms of the unfolded protein response. J. Zhejiang Univ. Sci. B 18, 1-14 (2017).[PubMed]

172.Lewy,T.G., Grabowski,J.M., & Bloom,M.E. BiP: Master regulator of the unfolded protein response and crucial factor in flavivirus biology. Yale J. Biol. Med. 90, 291-300 (2017).[PubMed]

173.Bertolotti,A., Zhang,Y., Hendershot,L.M., Harding,H.P., & Ron,D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell Biol. 2, 326-332 (2000).[PubMed]

174.Hong,M. et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J. Biol. Chem. 279, 11354-11363 (2004).[PubMed]

175.Bommiasamy,H. et al. ATF6alpha induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci. 122, 1626-1636 (2009).[PubMed]

176.Nagasawa,K., Higashi,T., Hosokawa,N., Kaufman,R.J., & Nagata,K. Simultaneous induction of the four subunits of the TRAP complex by ER stress accelerates ER degradation. EMBO Rep. 8, 483-489 (2007).[PubMed]

177.Nagelkerke,A., Bussink,J., Sweep,F.C., & Span,P.N. The unfolded protein response as a target for cancer therapy. Biochim. Biophys. Acta 1846, 277-284 (2014).[PubMed]

178.Zhang,K. et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124, 587-599 (2006).[PubMed]

179.Haze,K., Yoshida,H., Yanagi,H., Yura,T., & Mori,K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol. Biol. Cell 10, 3787-3799 (1999).[PubMed]

180.Ye,J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355-1364 (2000).[PubMed]

181.Young,S.K., Palam,L.R., Wu,C., Sachs,M.S., & Wek,R.C. Ribosome elongation stall directs gene-specific translation in the integrated stress response. J. Biol. Chem. 291, 6546-6558 (2016).[PubMed]

182.Muaddi,H. et al. Phosphorylation of eIF2alpha at serine 51 is an important determinant of cell survival and adaptation to glucose deficiency. Mol. Biol. Cell 21, 3220-3231 (2010).[PubMed]

183.Harding,H.P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619-633 (2003).[PubMed]

184.Novoa,I., Zeng,H., Harding,H.P., & Ron,D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 1011-1022 (2001).[PubMed]

185.B’chir,W. et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683-7699 (2013).[PubMed]

186.Harding,H.P. et al. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc. Natl. Acad. Sci. U. S. A 106, 1832-1837 (2009).[PubMed]

187.Martino,M.B. et al. The ER stress transducer IRE1β is required for airway epithelial mucin production. Mucosal. Immunol. 6, 639-654 (2013).[PubMed]

188.Bertolotti,A. et al. Increased sensitivity to dextran sodium sulfate colitis in IRE1beta-deficient mice. J. Clin. Invest 107, 585-593 (2001).[PubMed]

189.Hetz,C., Martinon,F., Rodriguez,D., & Glimcher,L.H. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev. 91, 1219-1243 (2011).[PubMed]

190.Sriburi,R. et al. Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J. Biol. Chem. 282, 7024-7034 (2007).[PubMed]

191.Lee,A.H., Iwakoshi,N.N., & Glimcher,L.H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell Biol. 23, 7448-7459 (2003).[PubMed]

192.Shaffer,A.L. et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21, 81-93 (2004).[PubMed]

193.Urano,F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-666 (2000).[PubMed]

194.Urra,H. & Hetz,C. A novel ER stress-independent function of the UPR in angiogenesis. Mol. Cell 54, 542-544 (2014).[PubMed]

195.Karali,E. et al. VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol. Cell 54, 559-572 (2014).[PubMed]

196.Mao,T. et al. PKA phosphorylation couples hepatic inositol-requiring enzyme 1alpha to glucagon signaling in glucose metabolism. Proc. Natl. Acad. Sci. U. S. A 108, 15852-15857 (2011).[PubMed]

197.Luo,J., Solimini,N.L., & Elledge,S.J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823-837 (2009).[PubMed]

198.Hersey,P. & Zhang,X.D. Adaptation to ER stress as a driver of malignancy and resistance to therapy in human melanoma. Pigment Cell Melanoma Res. 21, 358-367 (2008).[PubMed]

199.Pyrko,P., Schonthal,A.H., Hofman,F.M., Chen,T.C., & Lee,A.S. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res. 67, 9809-9816 (2007).[PubMed]

200.Guan,M. et al. MDA-9 and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis. Tumour Biol. 36, 2973-2982 (2015).[PubMed]

201.Lee,E. et al. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 66, 7849-7853 (2006).[PubMed]

202.Daneshmand,S. et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival. Hum. Pathol. 38, 1547-1552 (2007).[PubMed]

203.Pootrakul,L. et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin. Cancer Res. 12, 5987-5993 (2006).[PubMed]

204.Luo,C., Fan,W., Jiang,Y., Zhou,S., & Cheng,W. Glucose-related protein 78 expression and its effects on cisplatin-resistance in cervical cancer. Med. Sci. Monit. 24, 2197-2209 (2018).[PubMed]

205.Dauer,P. et al. GRP78-mediated antioxidant response and ABC transporter activity confers chemoresistance to pancreatic cancer cells. Mol. Oncol.(2018).[PubMed]

206.Zheng,H.C. et al. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum. Pathol. 39, 1042-1049 (2008).[PubMed]

207.Mhaidat,N.M., Alzoubi,K.H., Almomani,N., & Khabour,O.F. Expression of glucose regulated protein 78 (GRP78) determines colorectal cancer response to chemotherapy. Cancer Biomark. 15, 197-203 (2015).[PubMed]

208.Lee,H.K. et al. GRP78 is overexpressed in glioblastomas and regulates glioma cell growth and apoptosis. Neuro Oncol. 10, 236-243 (2008).[PubMed]

209.Kelber,J.A. et al. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene 28, 2324-2336 (2009).[PubMed]

210.Virrey,J.J. et al. Stress chaperone GRP78/BiP confers chemoresistance to tumor-associated endothelial cells. Mol. Cancer Res. 6, 1268-1275 (2008).[PubMed]

211.Kern,J. et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood 114, 3960-3967 (2009).[PubMed]

212.Abdel Malek,M.A. et al. Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma. Oncotarget 6, 3098-3110 (2015).[PubMed]

213.Maharjan,N. & Saxena,S. ER strikes again: proteostasis dysfunction in ALS. EMBO J. 35, 798-800 (2016).[PubMed]

214.Gorbatyuk,M.S. & Gorbatyuk,O.S. The molecular chaperone GRP78/BiP as a therapeutic target for neurodegenerative disorders: a mini review. J. Genet. Syndr. Gene Ther. 4, (2013).[PubMed]

215.Muchowski,P.J. & Wacker,J.L. Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 11-22 (2005).[PubMed]

216.Nuss,J.E., Choksi,K.B., DeFord,J.H., & Papaconstantinou,J. Decreased enzyme activities of chaperones PDI and BiP in aged mouse livers. Biochem. Biophys. Res. Commun. 365, 355-361 (2008).[PubMed]

217.Erickson,R.R., Dunning,L.M., & Holtzman,J.L. The effect of aging on the chaperone concentrations in the hepatic, endoplasmic reticulum of male rats: the possible role of protein misfolding due to the loss of chaperones in the decline in physiological function seen with age. J. Gerontol. A Biol. Sci. Med. Sci. 61, 435-443 (2006).[PubMed]

218.Paz Gavilan,M. et al. Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol. Aging 27, 973-982 (2006).[PubMed]

219.Salganik,M. et al. The loss of glucose-regulated protein 78 (GRP78) during normal aging or from siRNA knockdown augments human alpha-synuclein (alpha-syn) toxicity to rat nigral neurons. Neurobiol. Aging 36, 2213-2223 (2015).[PubMed]

220.Brown,M.K. & Naidoo,N. The endoplasmic reticulum stress response in aging and age-related diseases. Front. Physiol 3, 263 (2012).[PubMed]

221.Rajawat,Y.S., Hilioti,Z., & Bossis,I. Aging: central role for autophagy and the lysosomal degradative system. Ageing Res. Rev. 8, 199-213 (2009).[PubMed]

222.Ravikumar,B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585-595 (2004).[PubMed]

223.Ntsapi,C. & Loos,B. Caloric restriction and the precision-control of autophagy: A strategy for delaying neurodegenerative disease progression. Exp. Gerontol. 83, 97-111 (2016).[PubMed]

224.Hara,T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 (2006).[PubMed]

225.Kudo,T. et al. Altered localization of amyloid precursor protein under endoplasmic reticulum stress. Biochem. Biophys. Res. Commun. 344, 525-530 (2006).[PubMed]

226.Yang,Y., Turner,R.S., & Gaut,J.R. The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J. Biol. Chem. 273, 25552-25555 (1998).[PubMed]

227.Hoozemans,J.J. et al. The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. 110, 165-172 (2005).[PubMed]

228.Galan,M. et al. Mechanism of endoplasmic reticulum stress-induced vascular endothelial dysfunction. Biochim. Biophys. Acta 1843, 1063-1075 (2014).[PubMed]

229.Yerbury,J.J. & Wilson,M.R. Extracellular chaperones modulate the effects of Alzheimer’s patient cerebrospinal fluid on Abeta(1-42) toxicity and uptake. Cell Stress Chaperones 15, 115-121 (2010).[PubMed]

230.Liu,Z.C. et al. SIL1 rescued Bip elevation-related Tau hyperphosphorylation in ER stress. Mol. Neurobiol. 53, 983-994 (2016).[PubMed]

231.Itkin,A. et al. Calcium ions promote formation of amyloid beta-peptide (1-40) oligomers causally implicated in neuronal toxicity of Alzheimer’s disease. PLoS One 6, e18250 (2011).[PubMed]

232.Gorbatyuk,M.S. et al. Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol. Ther. 20, 1327-1337 (2012).[PubMed]

233.Libby,R.T. & Gould,D.B. Endoplasmic reticulum stress as a primary pathogenic mechanism leading to age-related macular degeneration. Adv. Exp. Med. Biol. 664, 403-409 (2010).[PubMed]

234.Sauer,T., Patel,M., Chan,C.C., & Tuo,J. Unfolding the Therapeutic Potential of Chemical Chaperones for Age-related Macular Degeneration. Expert. Rev. Ophthalmol. 3, 29-42 (2008).[PubMed]

235.Roybal,C.N. et al. Homocysteine increases the expression of vascular endothelial growth factor by a mechanism involving endoplasmic reticulum stress and transcription factor ATF4. J. Biol. Chem. 279, 14844-14852 (2004).[PubMed]

236.Joe,M.K. et al. Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. Biochem. Biophys. Res. Commun. 312, 592-600 (2003).[PubMed]

237.Rebello,G. et al. Apoptosis-inducing signal sequence mutation in carbonic anhydrase IV identified in patients with the RP17 form of retinitis pigmentosa. Proc. Natl. Acad. Sci. U. S. A 101, 6617-6622 (2004). [PubMed]

238.Kroeger,H. et al. Induction of endoplasmic reticulum stress genes, BiP and chop, in genetic and environmental models of retinal degeneration. Invest. Ophthalmol. Vis. Sci. 53, 7590-7599 (2012).[PubMed]

239.Kunte,M.M. et al. ER stress is involved in T17M rhodopsin-induced retinal degeneration. Invest. Ophthalmol. Vis. Sci. 53, 3792-3800 (2012).[PubMed]

240.Nakanishi,T. et al. Role of endoplasmic reticulum stress in light-induced photoreceptor degeneration in mice. J. Neurochem. 125, 111-124 (2013).[PubMed]

241.Shinde,V.M., Sizova,O.S., Lin,J.H., LaVail,M.M., & Gorbatyuk,M.S. ER stress in retinal degeneration in S334ter Rho rats. PLoS One 7, e33266 (2012).[PubMed]

242.Han,J.L. et al. [The expression of serum endoplasmic reticulum stress protein-78 in obstructive sleep apnea patients]. Zhonghua Nei Ke Za Zhi 55, 298-301 (2016).[PubMed]

243.Brown,M.K., Strus,E., & Naidoo,N. Reduced Sleep During Social Isolation Leads to Cellular Stress and Induction of the Unfolded Protein Response. Sleep 40, (2017).[PubMed]

244.Honda,T., Horie,M., Daito,T., Ikuta,K., & Tomonaga,K. Molecular chaperone BiP interacts with Borna disease virus glycoprotein at the cell surface. J. Virol. 83, 12622-12625 (2009).[PubMed]

245.Jindadamrongwech,S., Thepparit,C., & Smith,D.R. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch. Virol. 149, 915-927 (2004).[PubMed]

246.Triantafilou,K., Fradelizi,D., Wilson,K., & Triantafilou,M. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J. Virol. 76, 633-643 (2002).[PubMed]

247.Pasqual,G., Burri,D.J., Pasquato,A., de la Torre,J.C., & Kunz,S. Role of the host cell’s unfolded protein response in arenavirus infection. J. Virol. 85, 1662-1670 (2011).[PubMed]

248.Hassan,I.H. et al. Influenza A viral replication is blocked by inhibition of the inositol-requiring enzyme 1 (IRE1) stress pathway. J. Biol. Chem. 287, 4679-4689 (2012).[PubMed]

249.Medigeshi,G.R. et al. West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J. Virol. 81, 10849-10860 (2007).[PubMed]

250.Fraser,J.E., Wang,C., Chan,K.W., Vasudevan,S.G., & Jans,D.A. Novel dengue virus inhibitor 4-HPR activates ATF4 independent of protein kinase R-like endoplasmic reticulum kinase and elevates levels of eIF2α phosphorylation in virus infected cells. Antiviral Res. 130, 1-6 (2016).[PubMed]

251.Paton,A.W. et al. AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature 443, 548-552 (2006). [PubMed]

252.Wolfson,J.J. et al. Subtilase cytotoxin activates PERK, IRE1 and ATF6 endoplasmic reticulum stress-signalling pathways. Cell Microbiol. 10, 1775-1786 (2008).[PubMed]

253.Myeni,S. et al. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9, e1003556 (2013).[PubMed]

254.de Jong,M.F. et al. Sensing of bacterial type IV secretion via the unfolded protein response. MBio 4, e00418-12 (2013).[PubMed]

255.Smith,J.A. et al. Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog. 9, e1003785 (2013).[PubMed]

256.Deegan,S., Saveljeva,S., Gorman,A.M., & Samali,A. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress. Cell Mol. Life Sci. 70, 2425-2441 (2013).[PubMed]

257.Starr,T. et al. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45 (2012).[PubMed]

258.Watkin,L.B. et al. COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis. Nat. Genet. 47, 654-660 (2015).[PubMed]

259.Gaffen,S.L., Jain,R., Garg,A.V., & Cua,D.J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585-600 (2014).[PubMed]

260.Volpi,S. et al. Type I interferon pathway activation in COPA syndrome. Clin. Immunol. 187, 33-36 (2018).[PubMed]

261.Baechler,E.C. et al. An interferon signature in the peripheral blood of dermatomyositis patients is associated with disease activity. Mol. Med. 13, 59-68 (2007).[PubMed]

262.Psarras,A., Emery,P., & Vital,E.M. Type I interferon-mediated autoimmune diseases: pathogenesis, diagnosis and targeted therapy. Rheumatology (Oxford) 56, 1662-1675 (2017).[PubMed]

263.Vattemi,G., Engel,W.K., McFerrin,J., & Askanas,V. Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am. J. Pathol. 164, 1-7 (2004).[PubMed]

264.Lenna,S. et al. Increased expression of endoplasmic reticulum stress and unfolded protein response genes in peripheral blood mononuclear cells from patients with limited cutaneous systemic sclerosis and pulmonary arterial hypertension. Arthritis Rheum. 65, 1357-1366 (2013).[PubMed]

265.Baek,H.A. et al. Involvement of endoplasmic reticulum stress in myofibroblastic differentiation of lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 46, 731-739 (2012).[PubMed]

266.Furue,M. et al. Pathogenesis of systemic sclerosis-current concept and emerging treatments. Immunol. Res. 65, 790-797 (2017).[PubMed]

267.Wang,J. et al. Deficiency of IRE1 and PERK signal pathways in systemic lupus erythematosus. Am. J. Med. Sci. 348, 465-473 (2014).[PubMed]

268.Lee,W.S. et al. A pathogenic role for ER stress-induced autophagy and ER chaperone GRP78/BiP in T lymphocyte systemic lupus erythematosus. J. Leukoc. Biol. 97, 425-433 (2015).[PubMed]

269.Harding,H.P. et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol. Cell 7, 1153-1163 (2001).[PubMed]

270.Marhfour,I. et al. Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia 55, 2417-2420 (2012).[PubMed]

271.Engin,F. et al. Restoration of the unfolded protein response in pancreatic beta cells protects mice against type 1 diabetes. Sci. Transl. Med. 5, 211ra156 (2013).[PubMed]

272.Oyadomari,S. et al. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J. Clin. Invest 109, 525-532 (2002).[PubMed]

273.Morita,S. et al. Targeting ABL-IRE1alpha signaling spares ER-stressed pancreatic beta cells to reverse autoimmune diabetes. Cell Metab. 25, 883-897 (2017).[PubMed]

274.Morita,S. et al. Targeting ABL-IRE1alpha signaling spares ER-stressed pancreatic beta cells to reverse autoimmune diabetes. Cell Metab. 25, 1207 (2017).[PubMed]

275.Sobczak,M. et al. Current overview of extrinsic and intrinsic factors in etiology and progression of inflammatory bowel diseases. Pharmacol. Rep. 66, 766-775 (2014).[PubMed]

276.Kaser,A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743-756 (2008).[PubMed]

277.Shkoda,A. et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation. Gastroenterology 132, 190-207 (2007).[PubMed]

278.Heazlewood,C.K. et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5, e54 (2008).[PubMed]

279.Tschurtschenthaler,M. et al. Defective ATG16L1-mediated removal of IRE1α drives Crohn’s disease-like ileitis. J. Exp. Med. 214, 401-422 (2017).[PubMed]

280.Adolph,T.E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272-276 (2013).[PubMed]

281.Cosin-Roger,J., Hausmann,M., & Rogler,G. The role of the chaperone Grp94/Gp96 in the intestinal barrier and innate immune functions. Curr. Immunol. Rev. 13, 64-70 (2017).[CrossRef]

282.Dougados,M. & Baeten,D. Spondyloarthritis. Lancet 377, 2127-2137 (2011).[PubMed]

283.Colbert,R.A., Tran,T.M., & Layh-Schmitt,G. HLA-B27 misfolding and ankylosing spondylitis. Mol. Immunol. 57, 44-51 (2014).[PubMed]

284.Laval,S.H. et al. Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am. J. Hum. Genet. 68, 918-926 (2001).[PubMed]

285.Mear,J.P. et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J. Immunol. 163, 6665-6670 (1999).[PubMed]

286.Tran,T.M. et al. HLA-B27 in transgenic rats forms disulfide-linked heavy chain oligomers and multimers that bind to the chaperone BiP. J. Immunol. 172, 5110-5119 (2004).

287.Turner,M.J. et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J. Immunol. 175, 2438-2448 (2005).[PubMed]

288.Dong,W. et al. Upregulation of 78-kDa glucose-regulated protein in macrophages in peripheral joints of active ankylosing spondylitis. Scand. J. Rheumatol. 37, 427-434 (2008).[PubMed]

289.Zeng,L., Lindstrom,M.J., & Smith,J.A. Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum. 63, 3807-3817 (2011).[PubMed]

290.Neerinckx,B., Carter,S., & Lories,R.J. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann. Rheum. Dis. 73, 629-630 (2014).[PubMed]

291.Ciccia,F. et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann. Rheum. Dis. 73, 1566-1574 (2014).[PubMed]

292.Luo,S., Mao,C., Lee,B., & Lee,A.S. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Mol. Cell Biol. 26, 5688-5697 (2006).[PubMed]

293.Guy,C.T., Cardiff,R.D., & Muller,W.J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell Biol. 12, 954-961 (1992).[PubMed]

294.Wang,M., Wey,S., Zhang,Y., Ye,R., & Lee,A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal. 11, 2307-2316 (2009).[PubMed]

295.Roller,C. & Maddalo,D. The molecular chaperone GRP78/BiP in the development of chemoresistance: mechanism and possible treatment. Front. Pharmacol. 4, 10 (2013).[PubMed]

296.Lee,E., Nichols,P., Groshen,S., Spicer,D., & Lee,A.S. GRP78 as potential predictor for breast cancer response to adjuvant taxane therapy. Int. J. Cancer 128, 726-731 (2011).[PubMed]

297.Fu,Y. et al. Pten null prostate tumorigenesis and AKT activation are blocked by targeted knockout of ER chaperone GRP78/BiP in prostate epithelium. Proc. Natl. Acad. Sci. U. S. A 105, 19444-19449 (2008).[PubMed]

298.Zhou,X. et al. Glucose-regulated protein 78 contributes to the proliferation and tumorigenesis of human colorectal carcinoma via AKT and ERK pathways. Oncol. Rep. 36, 2723-2730 (2016).[PubMed]

299.Park,H.R. et al. Effect on tumor cells of blocking survival response to glucose deprivation. J. Natl. Cancer Inst. 96, 1300-1310 (2004).[PubMed]

300.Kim,Y. et al. Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry 45, 9434-9444 (2006).[PubMed]

301.Misra,U.K. & Pizzo,S.V. Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis 15, 173-182 (2010).[PubMed]

302.Mimura,N. et al. Aberrant quality control in the endoplasmic reticulum impairs the biosynthesis of pulmonary surfactant in mice expressing mutant BiP. Cell Death Differ. 14, 1475-1485 (2007).[PubMed]

303.Mimura,N. et al. Altered quality control in the endoplasmic reticulum causes cortical dysplasia in knock-in mice expressing a mutant BiP. Mol. Cell Biol. 28, 293-301 (2008).[PubMed]

304.Utsunomiya-Tate,N. et al. Reelin molecules assemble together to form a large protein complex, which is inhibited by the function-blocking CR-50 antibody. Proc. Natl. Acad. Sci. U. S. A 97, 9729-9734 (2000).[PubMed]

305.Fatemi,S.H. Reelin glycoprotein: structure, biology and roles in health and disease. Mol. Psychiatry 10, 251-257 (2005).[PubMed]

306.Beffert,U. et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47, 567-579 (2005).[PubMed]

307.Kudo,T. et al. A molecular chaperone inducer protects neurons from ER stress. Cell Death Differ. 15, 364-375 (2008).[PubMed]

308.Inokuchi,Y. et al. Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. Invest. Ophthalmol. Vis. Sci. 50, 334-344 (2009).[PubMed]

309.Oida,Y. et al. Post-treatment of a BiP inducer prevents cell death after middle cerebral artery occlusion in mice. Neurosci. Lett. 484, 43-46 (2010).[PubMed]

310.Takano,K. et al. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. Am. J. Physiol Cell Physiol 292, C353-C361 (2007).[PubMed]

311.Gorbatyuk,M.S. et al. Functional rescue of P23H rhodopsin photoreceptors by gene delivery. Adv. Exp. Med. Biol. 723, 191-197 (2012).[PubMed]

312.Luo,C. & Qiu,J. miR-181a inhibits cervical cancer development via downregulating GRP78. Oncol. Res. 25, 1341-1348 (2017).[PubMed]

313.Azatian,A. et al. Effectiveness of HSV-tk suicide gene therapy driven by the Grp78 stress-inducible promoter in esophagogastric junction and gastric adenocarcinomas. J. Gastrointest. Surg. 13, 1044-1051 (2009).[PubMed]

314.Misra,U.K., Mowery,Y., Kaczowka,S., & Pizzo,S.V. Ligation of cancer cell surface GRP78 with antibodies directed against its COOH-terminal domain up-regulates p53 activity and promotes apoptosis. Mol. Cancer Ther. 8, 1350-1362 (2009).[PubMed]

315.Misra,U.K., Kaczowka,S., & Pizzo,S.V. Inhibition of NF-kappaB1 and NF-kappaB2 activation in prostate cancer cells treated with antibody against the carboxyl terminal domain of GRP78: effect of p53 upregulation. Biochem. Biophys. Res. Commun. 392, 538-542 (2010).[PubMed]

316.de Ridder,G.G., Ray,R., & Pizzo,S.V. A murine monoclonal antibody directed against the carboxyl-terminal domain of GRP78 suppresses melanoma growth in mice. Melanoma Res. 22, 225-235 (2012).[PubMed]

317.Burikhanov,R. et al. The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis. Cell 138, 377-388 (2009).[PubMed]

318.Philippova,M. et al. Identification of proteins associating with glycosylphosphatidylinositol- anchored T-cadherin on the surface of vascular endothelial cells: role for Grp78/BiP in T-cadherin-dependent cell survival. Mol. Cell Biol. 28, 4004-4017 (2008).[PubMed]

319.Yao,X. et al. Cell surface GRP78 accelerated breast cancer cell proliferation and migration by activating STAT3. PLoS One 10, e0125634 (2015).[PubMed]

320.Brändlein,S. et al. The human IgM antibody SAM-6 induces tumor-specific apoptosis with oxidized low-density lipoprotein. Mol. Cancer Ther. 6, 326-333 (2007).[PubMed]

321.Yang,C.S., Lambert,J.D., Ju,J., Lu,G., & Sang,S. Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol. 224, 265-273 (2007).[PubMed]

322.Khan,N. & Mukhtar,H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 269, 269-280 (2008).[PubMed]

323.Ermakova,S.P. et al. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res. 66, 9260-9269 (2006).[PubMed]

324.Martin,S. et al. Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br. J. Cancer 109, 433-443 (2013).[PubMed]

325.Martinotti,S., Ranzato,E., & Burlando,B. (-)- Epigallocatechin-3-gallate induces GRP78 accumulation in the ER and shifts mesothelioma constitutive UPR into proapoptotic ER stress. J. Cell Physiol. (2018).[PubMed]

326.Chen,Y.J. et al. Honokiol induces cell apoptosis in human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Cancer Lett. 291, 20-30 (2010).[PubMed]

327.Jangra,A. et al. Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice. Eur. J. Pharmacol. 770, 25-32 (2016).[PubMed]

328.Matsuo,J. et al. Preventing the unfolded protein response via aberrant activation of 4E-binding protein 1 by versipelostatin. Cancer Sci. 100, 327-333 (2009).[PubMed]

329.Umeda,Y. et al. Prunustatin A, a novel GRP78 molecular chaperone down-regulator isolated from Streptomyces violaceoniger. J. Antibiot. (Tokyo) 58, 206-209 (2005).[PubMed]

330.Saito,S. et al. Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation. Cancer Res. 69, 4225-4234 (2009).[PubMed]

331.Park,H.R. et al. Glucose-deprived HT-29 human colon carcinoma cells are sensitive to verrucosidin as a GRP78 down-regulator. Toxicology 229, 253-261 (2007).[PubMed]

332.Thomas,S. et al. Repositioning of Verrucosidin, a purported inhibitor of chaperone protein GRP78, as an inhibitor of mitochondrial electron transport chain complex I. PLoS One 8, e65695 (2013).[PubMed]

333.Maddalo,D. et al. A peptidic unconjugated GRP78/BiP ligand modulates the unfolded protein response and induces prostate cancer cell death. PLoS One 7, e45690 (2012).[PubMed]

334.Gupta,P. et al. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res. 66, 8182-8191 (2006).[PubMed]

335.Cunningham,C.C. et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol. Ther. 11, 149-159 (2005).[PubMed]

336.Kang,J. et al. A peptide derived from phage display library exhibits anti-tumor activity by targeting GRP78 in gastric cancer multidrug resistance cells. Cancer Lett. 339, 247-259 (2013).[PubMed]

337.Yoneda,Y. et al. A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. Bioorg. Med. Chem. Lett. 18, 1632-1636 (2008).[PubMed]

338.Cheng,C.C. et al. Novel targeted nuclear imaging agent for gastric cancer diagnosis: glucose-regulated protein 78 binding peptide-guided 111In-labeled polymeric micelles. Int. J. Nanomedicine 8, 1385-1391 (2013).[PubMed]

339.Passarella,R.J. et al. Targeted nanoparticles that deliver a sustained, specific release of Paclitaxel to irradiated tumors. Cancer Res. 70, 4550-4559 (2010).[PubMed]

340.Backer,J.M. et al. Chaperone-targeting cytotoxin and endoplasmic reticulum stress-inducing drug synergize to kill cancer cells. Neoplasia 11, 1165-1173 (2009).[PubMed]

341.Dickson,N.R. et al. A phase I dose escalation study of NKP-1339 in patients with advanced solid tumors refractory to treatment. J. Clin. Oncol. 29, [ASCO Meeting Supplement], abstract (2011).

342.Burris,H.A. et al. Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: a first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open 1, e000154 (2016).[PubMed]

343.Botton,T. et al. In vitro and in vivo anti-melanoma effects of ciglitazone. J. Invest. Dermatol. 129, 1208-1218 (2009).[PubMed]

344.Cerezo,M. et al. Compounds triggering ER stress exert anti-melanoma effects and overcome BRAF inhibitor resistance. Cancer Cell 29, 805-819 (2016).[PubMed]

345.Ruggiero,C. et al. The GRP78/BiP inhibitor HA15 synergizes with mitotane action against adrenocortical carcinoma cells through convergent activation of ER stress pathways. Mol. Cell Endocrinol. (2018), in press. [PubMed]

346.Moriya,C. et al. PRDM14 directly interacts with heat shock proteins HSP90α and glucose-regulated protein 78. Cancer Sci. 109, 373-383 (2018).[PubMed]

347.Viswanath,A.N.I. et al. GRP78-targeted in-silico virtual screening of novel anticancer agents. Chem. Biol. Drug Des. (2018), in press. [PubMed]